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Characterization of the minimum energy path for the reaction of singlet
methylene with N2: The role of singlet methylene in prompt NO
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We report calculations of the minimum energy pathways connecting ICH2+N2 to diazomethane and /4//
diazirine, for the rearrangement of diazirine to diazomethane, for the dissociation of diazirine to

HCN2+H, and of diazomethane to CH2N+N. The calculations use complete active space <_-ff,t.//ff:_
self-consistent field (CASSCF) derivative methods to characterize the stationary points and
internally contracted configuration interaction (ICCI) to determine the energetics. The calculations

suggest a potential new source of prompt NO from the reaction of ]CH z with N 2 to give diazirine,

and subsequent reaction of diazirine with hydrogen abstracters to form doublet HCN 2, which leads
to HCN+N(4S) on the previously studied CH+N 2 surface. The calculations also predict accurate 0

K heats of formation of 77.7 kcal/mol and 68.0 kcal/mol for diazirine and diazomethane,

respectively. © 1995 American Institute of Physics.

I. INTRODUCTION

The reaction of singlet methylene (ICH2) with N 2 along

with the reaction of CH(2II) with N 2, which was previously

studied by Walch, I are potentially important in the formation

of "prompt" NO. 2 While triplet methylene is known to be

important in some of the reactions leading to prompt NO
formation, 2 the role of singlet methylene has not been con-

sidered previously. There have been several previous studies

of the CH2N 2 surface. An early study of the ground state and
some of the low-lying excited states of diazomethane, at the

ground state geometry, was carded out by Walch and
Goddard. 3 More recent work has been carded out by Bold-

yrev, Schleyer, Higgins, Thomson, and Kramarenko 4
(BSHTK) who studied the diazirine and diazomethane

minima and several saddle points on the CH2N 2 as well as
the CHFN 2 and CF2N 2 potential energy surfaces. Guimon,

Khayar, Gracian, Begtrup, and Pfister Guillouzo 5 (GKGBP),

as part of a study on the decomposition of tetrazole, also

reported a number of stationary points on the CH2N 2 surface,

including a saddle point connecting diazirine and diaz-
omethane. These studies were carried out at a lower level of

theory than that used in the present study and did not provide

sufficiently detailed information for combustion modelling

studies. In this paper we report a detailed study of the path-
ways for addition of I CH2 to N 2 to give diazomethane and

diazirine and the pathway for rearrangement of diazirine to
diazomethane. Calculations with extended basis sets are also

reported which lead to accurate heats of formation for diaz-
irine and diazomethane.

In Sec. II we discuss qualitative features of the reactions
considered here. Section HI contains the technical details of

the calculations, Sec. IV contains the results, and Sec. V

concludes the paper.

II. QUALITATIVE FEATURES

Figure I shows the qualitative features of the orbitals for

the reaction of lCH 2 with N 2 via a pathway in which the CH 2

attacks the 7r bond of N 2. In the IA 1 ground state of meth-

ylene (ICH2) there is a substantial near degeneracy effect

between the C 2s lone pair and the empty C 2p orbital of a"

symmetry. This leads to a pair of singlet coupled sp hybrid

orbitals directed above and below the molecular plane, as

indicated in Fig. l(a). In the addition of 1CH2 to N 2, two
bond pairs undergo major changes. These are the two elec-

trons in the CH 2 C 2s pair discussed earlier and the in plane
w orbital of N 2. By analogy to the reaction of CH(2II) with

N 2 (Ref. 1) and the reaction of CH(21-I) with H 2 (Ref. 6), the

addition of ]CH 2 to N 2 occurs via a pathway, as shown in

Fig. l(a), in which the CH and N 2 approach each other in a

a) b)

c) _ d)

H,:,

(Z]

XX =#I

xx

e)

FIG. 1. The electronic structure of selected stationary points on the potential

energy surface for CH2(1AI)+N2: (a) sp]; (b) min 1; (c) sp3; (d) distorted

diazomethane; (e) sp2 ; (f) rain 2.
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TABLE I. Computed energies for stationary points on the 1CH2+Nz surface.

Geometry CI 1a A Eb

(a)c

Reactants - 148.427 21 (- 0.469 40) 0.0

min I -148.471 56( 0.518 97) -24.0

min 2 - 148.480 05(-0.531 98) -33.9

3CH2+N2 - 148.443 88(-0.484 81) -9.7

Geometry CI 1" AE b C12a

(b)_

Reactants - 148.391 06(-0.43026) 0.0

3CH2+ N 2 - 148.408 70(- 0.44677) - 10.4
vdW - 148.390 96( - 0.43381 ) - 0.5

sp3 - 148.398 69(-0.44458) -4.9

sp I - 148.383 37(- 0.42918) 4.7
min 1 - 148.434 44(-0.47866) -23.3

sp2
min 2 - 148.443 45(-0.49145) -32.9

CH2N + N
HCN2+H - 148.282 39(-0.32161) 66.2

Geometry CI Ia AE b

- 148.392 69(-0.431 14)

- 148.385 66(-0.430 64)

- 148.435 68(-0.479 61)
- 148.359 65(-0.405 59)

- 148.291 37(-0.332 44)

(c)"

Reactants - 148.270 49(-0.29892) 0.0

min I - 148.311 75(-0.34441) -21.4

min 2 -148.319 34(-0.35505) -29.7

3CH2+N2 - 148.290 72(-0.31842) - 12.3

Geometry CASSCF AE"

(d)

Reactants - 147.998 52 0.0

sp I - 147.967 61 23.5
min 1 -148.01541 -3.5

sp2 - 147.939 63 40.8
min 2 - 148.011 55 -2.7

vdW - 148.004 30 - 1.9

sp3 - 148.001 51 2.2

aThe energies are in the form ICCI (ICCI+Q+148).
bRelative energies in kcal/mol including zero-point energy (see Table II).

Ccc-pVQZ basis set.
dcc-pVTZ basis set.

%c-pVDZ basis set.

AE b

0.0

4.4

-23.3

19.8

-33.2

64.3

nearly parallel arrangement. This non-least-motion pathway

allows the formation of the diazirine molecule [Fig. l(b)],

while maintaining large overlaps between the components of

the two bond pairs which change substantially during the

course of the reaction (see Ref. 6). By contrast, addition of

1CH2 to N 2 via a C2o pathway requires effectively breaking

one bond and is a forbidden process. 7

Another pathway leading to diazomethane involves ini-

tial formation of a dative bond between one N 2s lone pair of

N 2 and the empty C 2p orbital of CH 2 [Fig. l (c)]. This struc-

ture evolves to diazomethane [Fig. l(d)] by simultaneous

donation of the N 2s pair onto carbon and back donation of

the C 2s pair into the 7r system of diazomethane. This pro-

cess involves no barrier.

Figure l(e) shows the orbitals for the saddle point con-

necting diazirine to diazomethane. The two radical orbitals in

Fig. l(e) arise from the CN cr bond of diazirine which is

being broken. The doubly occupied orbital on the center N

atom starts as a N 2s-like lone pair, but becomes sp-like in

the saddle-point region and eventually becomes a _" orbital

for diazomethane. The orbitals for diazomethane are shown

in Fig. l(f). From Fig. l(f) it is seen that diazomethane has

two 7r electrons in a' orbitals and four 7r electrons in a"

orbitals (with respect to the molecule plane). The two singly

occupied a" orbitals shown in Fig. l(f) are singlet paired as

a result of through bond coupling from the doubly occupied

a" orbital on the center N. 3

III. COMPUTATIONAL DETAILS

Several different basis sets were used in these calcula-

tions. For the CASSCF derivative calculations, which were

used to locate the stationary points, the polarized valence

double zeta set of Dunning and Hay 8 was used. The basis

sets for C and N are the (9s5p)/[3s2p] basis augmented by

a single set of 3d functions with exponent 0.75 for C and
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I. INTRODUCTION

The reaction of singlet methylene (1CH2) with N 2 along
with the reaction of CH(2II) with N 2, which was previously

studied by Walch, ! are potentially important in the formation

of "prompt" NO. 2 While triplet methylene is known to be

important in some of the reactions leading to prompt NO

formation, 2 the role of singlet methylene has not been con-

sidered previously. There have been several previous studies

of the CH2N 2 surface. An early study of the ground state and

some of the low-lying excited states of diazomethane, at the

ground state geometry, was carded out by Walch and

Goddard. 3 More recent work has been carried out by Bold-

yrev, Schleyer, Higgins, Thomson, and Kramarenko 4 a)
(BSHTK) who studied the diazirine and diazomethane

minima and several saddle points on the CH2N 2 as well as
the CHFN 2 and CF2N 2 potential energy surfaces. Guimon,

Khayar, Gracian, Begtrup, and Pfister Guillouzo 5 (GKGBP),

as part of a study on the decomposition of tetrazole, also

reported a number of stationary points on the CH2N 2 surface,

including a saddle point connecting diazirine and diaz-

omethane. These studies were carded out at a lower level of c)
theory than that used in the present study and did not provide

sufficiently detailed information for combustion modelling

studies. In this paper we report a detailed study of the path-
ways for addition of _CH 2 to N 2 to give diazomethane and

diazirine and the pathway for rearrangement of diazirine to
diazomethane. Calculations with extended basis sets are also

reported which lead to accurate heats of formation for diaz-
irine and diazomethane.

In Sec. II we discuss qualitative features of the reactions
e)

considered here. Section III contains the technical details of

the calculations, Sec. IV contains the results, and Sec. V

concludes the paper.

II. QUALITATIVE FEATURES

Figure 1 shows the qualitative features of the orbitals for

the reaction of tCH2 with N 2 via a pathway in which the CH 2

attacks the ¢r bond of N 2. In the 1A 1 ground state of meth-
ylene (ICH2) there is a substantial near degeneracy effect

between the C 2s lone pair and the empty C 2p orbital of a"

symmetry. This leads to a pair of singlet coupled sp hybrid
orbitals directed above and below the molecular plane, as

indicated in Fig. l(a). In the addition of ICH2 to N 2, two

bond pairs undergo major changes. These are the two elec-

trons in the CH 2 C 2s pair discussed earlier and the in plane
1r orbital of N 2. By analogy to the reaction of CH(21-I) with

N 2 (Ref. 1) and the reaction of CH(2II) with H 2 (Ref. 6), the
addition of ICH2 to N 2 occurs via a pathway, as shown in

Fig. 1(a), in which the CH and N 2 approach each other in a

b)

_ H'_
N

d) C

C

f)
4'

FIG. 1. The electronic structure of selected stationary points on the potential

energy surface for CH2(1AI)+N2: (a) sp_; (b) min 1; (c) sp3; (d) distorted

diazomethane; (e) sp2 ; (f) rain 2.
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TABLE I. Computed energies for stationary points on the 1CH2+N 2 surface.

Geometry CI I a A E b

(a)_
Reactants - 148.427 21 (-0,469 40) 0.0

rain I - 148.471 56(-0.518 97) -24.0

rain 2 - 148.480 05(-0.531 98) -33.9

3CH2+N 2 - 148.443 88(-0.484 81) -9.7

Geometry CI I" A E b C12" A E b

(b)_
Reactants - 148,391 06(- 0,43026) 0.0

aCH:+N2 - 148.408 70(-0,44677) - 10.4

vdW - 148.390 96(-0,43381) -0.5

sp3 - 148.398 69(-0.44458) -4.9

sp I - 148.383 37(-0,42918) 4.7

rain 1 - 148.434 44(-0,47866) -23.3

sp2

min 2 - 148.443 45(-0.49145) -32.9

CH2N+N

HCN_+H - 148.282 39(-0.32161) 66.2

- 148.392 69(-0.431 14)

- 148.385 66(-0,430 64)

- 148,435 68(-0,479 61)

- 148.359 65(-0.405 59)

- 148.291 37(-0.332 44)

Geometry CI 1a A E b

(C) ¢

Reactants - 148.270 49(-0,29892) 0.0

rain 1 - 148.311 75(-0,34441) -21.4

min 2 - 148.319 34(-0,35505) -29.7

3CH2 + N 2 - 148.290 72( - 0,31842) - 12.3

Geometry CASSCF AE"

(d)
Reactants - 147.998 52 0.0

sp I - 147,967 61 23.5

rain 1 - 148.015 41 -3.5

sp2 - 147.939 63 40,8

rain 2 - 148.011 55 -2.7

vdW - 148.004 30 - 1.9

sp3 - 148.001 51 2.2

_The energies are in the form ICCI (ICCI+Q+ 148).

bRelative energies in kcal/mol including zero-point energy (see Table II).

%c-pVQZ basis set.

dcc-pVTZ basis set.

Ccc-pVDZ basis set.

0.0

4.4

- 23.3

19.8

-33.2

64.3

nearly parallel arrangement. This non-least-motion pathway
allows the formation of the diazirine molecule [Fig. l(b)],

while maintaining large overlaps between the components of

the two bond pairs which change substantially during the
course of the reaction (see Ref. 6). By contrast, addition of

ICH2 to N 2 via a C2t, pathway requires effectively breaking
one bond and is a forbidden process]

Another pathway leading to diazomethane involves ini-
tial formation of a dative bond between one N 2s lone pair of

N 2 and the empty C 2p orbital of CH 2 [Fig. 1(c)]. This struc-
ture evolves to diazomethane [Fig. l(d)] by simultaneous

donation of the N 2s pair onto carbon and back donation of

the C 2s pair into the zr system of diazomethane. This pro-
cess involves no barrier.

Figure l(e) shows the orbitals for the saddle point con-

necting diazirin e to diazo_ethane. The two radical orbitals in

Fig. l(e) arise from the CN o" bond of diazirine Which is

being broken. The doubly occupied orbital on the center N

atom starts as a N 2s-like lone pair, but becomes sp-like in

the saddle-point region and eventually becomes a 7r orbital
for diazomethane. The orbitals for diazomethane are shown

in Fig. t(f). From Fig. l(f) it is seen that diazomethane has
two _r electrons in a' orbitals and four zr electrons in a"

orbitals (with respect to the molecule plane). The two singly

occupied a" orbitals shown in Fig. l(f) are singlet paired as

a result of through bond coupling from the doubly occupied
a" orbital on the center N. 3

III. COMPUTATIONAL DETAILS

Several different basis sets were used in these calcula-

tions. For the CASSCF derivative calculations, which were

used to locate the stationary points, the polarized valence

double zeta set of Dunning and Hay s was used. The basis

sets for C and N are the (9s5p)/[3s2p] basis augmented by

a single set of 3d functions with exponent 0.75 for C and
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TABLE II. Harmonic vibrational frequencies and zero-point energy for _CH2+N2. Harmonic frequencies in
cm -I obtained from CASSCF calculations with a pVDZ basis set.

sp I vdW min ! sp2 rain 2 CH2N HCN2

Frequencies
3214
1951
1461

1081
477

721i
3348
1009

389
ZPE=

0.029 45

sp3

3142
2342
1471

1180
258

248i
3240
1084

232

ZpE •
0.029 50

3100 3307 3313 3360
2329 1660 1595 1902

1509 1546 1491 1495
534 1033 960 1162

97 1047 747 560

75 836 g88i 328
3176 3436 141 3505

373 1166 3458 1188

80 1018 1047 419

3253 3432

1659 1570

1438 612
1001 928

3360 1251

1021 891

0.025 68 0.034 28 0.029 05 0.031 71 0.02673 0.01976

=Zero-point energy in Eu. The zero-point energy for the reactants is 0.022 97,

0.80 for N (pVDZ). The H basis is (4s)/[2s] augmented

with a single set of 2p functions with exponent 1.00. The

basis sets used in ICCI calculations are the Dunning correla-

tion consistent cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets. 9

The calculations were carded out in Cs symmetry with

the mirror plane in the plane of the paper of Fig. 1, The

active space for the CASSCF calculations included the eight

electrons which are depicted in Fig. 1(a). This required six

active orbitals of a' symmetry and two active orbitals of a"

symmetry. The resulting CASSCF calculation had eight elec-

trons distributed among eight orbitals.

The CASSCF gradient calculations used the SIRIUS/

ABACUS system of programs, l° while the ICCI calculations

were carried out with MOLPRO. 11'12 All electrons were corre-

lated except for the C 1 s and N 1s like electrons with the

restriction that no more than two electrons were allowed into

certain weakly occupied orbitals. These orbitals were the

highest three a' and highest a" orbitals for the calculation

denoted by CI1 and the highest two a' and highest a" orbit-

als for the calculation denoted by CI2. A multireference ana-

log of the Davidson's correction 13 was added to the ICCI

energies and is denoted by + Q.

IV. DISCUSSION

The computed ICCI energies obtained at the optimized

CASSCF geometries are given in Tables I(a), I(b), and I(c)

for results obtained with the cc-pVQZ, cc-pVTZ, and cc-

pVDZ basis sets, respectively. The zero-point effects were

estimated as 1/2 the sum of the harmonic frequencies, which

I(c). Thus, the relative energies are appropriate for compari-

son to experimental results corrected to 0 K. The relative

energies from Table I are also shown in Fig. 2. Table III

gives the values of selected bond lengths and angles for the

stationary points obtained here and also gives results from

BO.O

N

HCf! + H

60.0 _

H2C--'N + N

40.0__ j /

- _ CH2 + NZ / /
spZ / /

o.o- d/-20.0

i N..... "q__/
-4o.o_ HZC..,II re,n]

N ' • •
H2C_ min2

FIG. 2. Computed energetics for the reaction of CH2(_A _) with N 2. Note

that while sp3 is a saddle point at the CASSCF level, it is below the
are given in Table II, and the zero-point effects are included reactants energy at the ICCI level and it is probable that there is no barrier
in the relative energies, which are also given in Tables I(a)- on_this pathway.
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HG. 5. Geometries along the reaction pathconnecting diazirine with diaz-
omethane.

FIG. 3. Geometries for the stationary points on the )CH2+Nz surface. Up-
per left sps ; upper-right rain l; center left sp2; center right rain 2; bottom
left vdW; bottom-right sp3.

omethane and 34.1 kcal/mol for diazirine. These values in-

clude zero-point effects and are appropriate for 0 K. Using a

heat of formation of lCH2 of 102.1 kcal/mol obtained from

the heat of formation of 3CH2 of 93 kcal/mol and a singlet-

triplet splitting of 9.1 kcal/mol gives heats of formation of
77.7 kcal/mol for diazirine and 68.0 kcal/mol for diaz-

omethane. Laufer and Okobe 17 report the heat of formation

of diazirine as 60.6-66 kcal/mol. However, there is an ear-

lier value of 79.3 kcal/mol by Paulett and Ettinger) s The

discrepancy between our calculated value and the value of
Laufer and Okobe is surprisingly large and our calculations

support the value obtained by Paulett and Ettinger. Laufer

and Okobe also report a heat of formation of 51-60 kcal/mol
for diazomethane. 19 This is also surprisingly far from our

computed value. Calculations for the D e of N 2 using the

same extrapolation method as used here give an extrapolated

value of 226.8 kcal/mol compared to an experimental value
of 228.4 kcal/mol. 2° As a further check on the computed

results, we also computed the energy of 3CHz+Nz with each

of the basis sets. The 3CH2 geometry was taken from the

work of Bauschlicher, Langhoff, and Taylor 21 who carded

out a definitive study of the singlet-triplet splitting in CH 2.

These results are also given in Tables I(a)-I(c). Here it is

FIG, 4. Geometries along the reactionpath connecting tCHz+N2 with di-
azirine.

seen that the cc-pVQZ basis set gives a separation of 9.7

kcal/mol compared to 9.1 kcal/mol obtained in Ref. 21 with
a comparable size ANO basis set. Taking these consider-

ations together leads us to assign a maximum error of 2

kcal/mol to our reported 0 K heats of formation for diazirine
and diazomethane.

From Ref. 20 it is expected that the barrier heights ob-

tained with the cc-pVTZ basis set would change by less than

0.5 kcal/mol if extrapolated to the basis set limit. This occurs

because the barrier height involves an energy difference be-

tween a bond that is being broken and a bond that is forming

and therefore there is a cancellation of errors. Accordingly,
this extrapolation was not carried out for the barrier heights

reported in Table I(b).

Table I(d) gives energetics for the stationary points ob-

tained at the CASSCF level with the pVDZ basis set. As

expected, these energetics are much less reliable than those

obtained from the ICCI calculations. The general trends are

that the binding energies are underestimated and the barrier

heights are overestimated. In spite of these obvious defects
in the CASSCF energetics, comparison of CASSCF and

ICCI stationary points for the N+O 2 reaction 22 showed that

the CASSCF method does a very good job of predicting the

geometry in the directions perpendicular to the reaction co-

ordinate, but that the saddle-point geometries can be shifted

somewhat along the direction of the reaction coordinate. An

FIG. 6. Geometries along the reaction path connecting TCHz+N2with dia-
zomethane.
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extreme example of this effect, in the present calculations,

occurs for sp3, where the ICCI method finds an energy at

the saddle-point geometry below that of the reactants. This

has been interpreted to mean that the barrier is shifted far out
into the entrance channel and in fact there is probably no

barrier. In a case where the barrier persists at the ICCI level,

the shift along the reaction coordinate is normally much less

significant.

We now return to consideration of other product chan-

nels in the reaction of _CH2 with N 2. Formation of CH2N+N

is endothermic by 64 kcal/mol and involves a singlet-triplet

crossing. Thus, this pathway is not a likely product channel.

Dissociation of diazirine to CHN2+H can lead to either dou-

blet or quartet CHN 2. The quartet state (q min 1 of Ref. 1) is
17.0 kcal/mol above the doublet state (d min 2). However,

CHN2+H is computed to be endothermic by 66 kcal/mol,

with respect to reactants, for the doublet state of CHN z, and

is also not a likely direct product.
More likely processes leading to CHN 2 are hydrogen

abstraction from diazirine or diazomethane, both of which

are expected to be important products of the reaction of
1CH2 with N 2. Hydrogen abstraction from diazomethane

leads to an HCN 2 geometry like the dative structure of
Manaa and Yarkony. z3 Previous theoretical studies t indicate

that there is a large barrier between the dative structure and

the region of the surface leading to HCN+N. Thus, this path-

way is not expected to contribute to prompt NO formation.

On the other hand, hydrogen abstraction from diazirine leads

to an HCN 2 geometry like that involved in the doublet-

quartet surface crossing region of the CH+N 2 surface. For

example, the reaction

diazirine + OH---,CHN 2+ H20 (1)

is exothermic by 28.5 kcal/mol, In addition, assuming no

vibrational relaxation, diazirine formed from ICH2+N2

would have about 38 kcal/mol of internal energy (energy of

sp j minus energy of rain 2), leading to a total of 66 kcal/mol

of available energy. As the NN bond is considerably shorter

in diazirine it is probable that CHN 2 will be formed with a
large amount of energy in the NN stretching mode. [The

quartet state of CHN 2 has a longer NN bond (2.377 _) than

the doublet state (1.635 _), which in turn is longer than the

NN bond in diazirine (1.253 4).] From Ref. 1 the saddle

points leading to CH+N 2 on the doublet surface and to

HCN+N on the quartet surface are 31 kcal/mol and 36 kcal/

tool above d min 2, respectively. Thus, if this much energy is

transfered into vibrational energy, these channels are ener-

getically accessible. Furthermore, energy in the NN stretch-

ing mode also favors the doublet to quartet crossing [In Eq.
(1) the CHN2 is formed initially in the doublet state], leading

to HCN+N(4S), as for the CH(2II)+N2 reaction.

V, CONCLUSIONS

The reaction pathways for the reaction of 1CH2 with N 2

have been studied using complete active space self-
consistent field (CASSCF) derivative methods to character-

ize the stationary points and internally contacted configura-

tion interaction (ICCI) to determine the energetics.

ICH2+N2 can lead to diazomethane, with no barrier, or to

diazirine, with a barrier of 5 kcal/mol, Diazirine is computed

to be about 24 kcal/mol below lCH2 plus N 2. Rearrangement

to diazomethane involves a 20 kcal/mol barrier, with respect

to reactants, and diazomethane is computed to be about 34
kcal/mol below ICH2 plus N 2. The CH2N+N and CHN2+H

channels are computed to be endothermic by 64 kcal/mol and

66 kcal/mol, respectively. Thus, these product channels are

unlikely to be important.
The computed potential energy surface would suggest

that diazirine will be readily formed from tCH2 plus N 2. It is

proposed that subsequent reaction of diazirine with hydrogen

abstracters such as OH, which would be abundant in the

combustion environment, would lead to doublet CHN 2, with

considerable vibrational excitation, especially in the NN

stretch mode, which would facilitate doublet to quartet cross-

ing, leading to HCN+N product. Thus, this pathway may be

an important new source of "prompt" NO.
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abstraction from diazirine or diazomethane, both of which
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NN bond in diazirine (1.253 ,_).] From Ref. 1 the saddle

points leading to CH+N 2 on the doublet surface and to
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consistent field (CASSCF) derivative methods to character-

ize the stationary points and internally contacted configura-

tion interaction (ICCI) to determine the energetics.

ICH2+N2 can lead to diazomethane, with no barrier, or to

diazirine, with a barrier of 5 kcal/mol. Diazirine is computed

to be about 24 kcal/mol below ICH2 plus N 2. Rearrangement

to diazomethane involves a 20 kcal/mol barrier, with respect

to reactants, and diazomethane is computed to be about 34

kcal/mol below ICH2 plus N 2. The CH2N+N and CHN2+H

channels are computed to be endothermic by 64 kcal/mol and

66 kcal/mol, respectively. Thus, these product channels are

unlikely to be important.

The computed potential energy surface would suggest

that diazirine will be readily formed from ICH2 plus N 2. It is

proposed that subsequent reaction of diazirine with hydrogen

abstracters such as OH, which would be abundant in the

combustion environment, would lead to doublet CHN 2, with

considerable vibrational excitation, especially in the NN

stretch mode, which would facilitate doublet to quartet cross-

ing, leading to HCN+N product. Thus, this pathway may be

an important new source of "prompt" NO.
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